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Abstract

A numerical approach based on the three-dimensional boundary element method (BEM) is developed to
determine the acoustic length correction of closed cylindrical side-branched tube mounted perpendicular to
a cylindrical main pipe. The effects of Helmholtz number and finite length of side-branched tube on the
acoustic length correction are examined, and a curve-fitting expression is provided for the acoustically long
side-branched tube. For a pipe-mounted concentric Helmholtz resonator, the transmission loss and
resonance frequency are predicted by using the 3-D BEM and the corrected 1-D analytical approach to
assess the accuracy and applicability of the latter, as well as to illustrate the importance of acoustic length
correction for an accurate prediction of resonance frequency of the pipe-mounted resonator.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Side-branch and Helmholtz resonators are used widely to suppress the low-frequency narrow
band noise in pulsating internal flows. The sound field inside the main pipe and side-branch near
the junction is three-dimensional, but the one-dimensional approach may be used to obtain an
approximate prediction because the higher order modes are evanescent and only the planar mode
propagates below the cut-off frequency of the main pipe. In order to improve the accuracy of
one-dimensional prediction, the acoustic length correction of side-branch, which accounts the
three-dimensional wave effects associated with the generation of evanescent modes, is required [1].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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The objective of the present work is then to employ the three-dimensional boundary element
method to determine the acoustic length correction of the side-branch on a main pipe both with
the cylindrical geometry, and then suggest an approximate expression for the acoustic length
correction. Finally, the corrected one-dimensional analytical solutions of transmission loss and
resonance frequency for a Helmholtz resonator are compared with the three-dimensional BEM
predictions and experimental results to assess the accuracy and applicability of the corrected 1-D
analytical approach.
2. Formulation

Consider a closed cylindrical branched tube mounted perpendicular to a cylindrical main pipe as
shown in Fig. 1. The frequency is assumed to be sufficiently low (compared to the cut-off frequency
of the main pipe) so that only the planar mode propagates, whereas the higher order modes are
evanescent [2–4]. If the side-branch is long enough, then the input impedance of the evanescent
modes is ‘‘inductive’’. The inertance can be classically written as a ‘‘length correction’’ for the side-
branch. For the linear wave propagation, the length correction of a side-branch resonator may be
determined by measuring or calculating resonance frequency fr, which may be expressed as

f r ¼ c0=4ðlb þ dÞ; (1)

where lb is the length of side-branch, d is the acoustic length correction and c0 is the speed of sound.
In the present study, the three-dimensional BEM is employed to calculate the transmission loss

of side-branch resonators, and then the resonance frequency may be determined from the
transmission loss curve. The transmission loss and resonance frequency are correctly predicted
without any correction to the real dimensions of the duct system. The transmission loss
calculation procedure is identical to those used earlier [5] and will not be repeated here.
In order to satisfy the plane wave condition at the inlet and outlet of main pipe, the frequency

considered needs to be lower than the plane wave cut-off frequency of the main pipe so that the
higher order modes are evanescent.
db

lb

dp

Fig. 1. Side-branched tube mounted perpendicular to a cylindrical main pipe.



ARTICLE IN PRESS

Z.L. Ji / Journal of Sound and Vibration 283 (2005) 1180–11861182
3. Results and discussion

The studies of Dubos et al. [3] for a rectangular duct and Dalmont et al. [4] for a cylindrical duct
with an open branched tube demonstrated that the Helmholtz number kap has an influence on the
acoustic length correction of side-branch. Similarly, Figs. 2 and 3 show the effect of kap on the
acoustic length correction of the closed cylindrical side-branched tubes for two different diameter
ratios with db=dp ¼ 0:5 and 1.0. The acoustic length correction is increased as the increase of kap or
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Fig. 2. Effect of Helmholtz number on the acoustic length correction of side-branched tube ðab=ap ¼ 0:5Þ:
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Fig. 3. Effect of Helmholtz number on the acoustic length correction of side-branched tube ðab=ap ¼ 1Þ:
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frequency for a fixed diameter of the main pipe. However, the difference of the length correction in
the low Helmholtz number range (for example, less than 0.5) is very small and negligible.
The finite length effect on the acoustic length correction of side-branch resonator is examined

next. Figs. 4 and 5 present the acoustic length correction predictions of the side-branch resonators
for the cases of db=dp ¼ 0:5 and 1.0, respectively. It can be remarked that for the short lengths, the
resonance frequencies are high, and the results indirectly give the length correction with respect to
frequency. For this case, the ‘‘length correction’’ is not a convenient quantity, instead of the
inertance. The detail analysis and discussion have been presented by Dubos et al. [3], and are not
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Fig. 4. Finite length effect on the acoustic length correction of side-branched tube ðab=ap ¼ 0:5Þ:
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Fig. 5. Finite length effect on the acoustic length correction of side-branched tube ðab=ap ¼ 1Þ:
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repeated here. With increasing the length of side-branched tube, the ‘‘acoustic length correction’’
is decreased and converged to a fixed value for a given diameter ratio. Thus in applying the
modified one-dimensional approach, the lower limit of length-to-diameter ratio for side-branched
tube needs to be considered to ensure that the finite length effect is negligible. If the frequency is
lower than the plane wave cut-off frequency, the sound pressure attenuation of the mode (1, 0)
within the side-branched tube will be

e�jk10lb ¼ ej
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
�ða10=abÞ

2
p

lb ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a10�ðkabÞ

2
p

ðlb=abÞ: (2)

For example, considering the case of kab ¼ 0:5 and lb=db ¼ 2:0; the wave attenuation of the mode
(1, 0) within the side-branched tube is e�jk10lb ¼ 0:00084: So that, if taking kapp0:5 and the length
of side-branched tube and each sections of main pipe are more than twice of their diameters, all of
high-order modes may be considered to be attenuated fully within the side-branched tube. In the
following calculations, the lengths of main pipe and side-branched tube will be selected to be
above double their diameters to ensure the plane wave condition at inlet and outlet of the main
pipe and exclude the effect of finite length.
Fig. 6 shows the length correction calculations using BEM and Eq. (1). A curve-fitting

expression is suggested as

d=ab ¼
0:8216� 0:0644ðab=apÞ � 0:694ðab=apÞ

2; ab=app0:4;

0:9326� 0:6196ðab=apÞ; ab=ap40:4

(
(3)

and plotted with solid line in Fig. 6. The relative errors between BEM calculations and Eq. (3) are
within 1%. For the limited case of ab=ap ¼ 0; the length correction d=ab ¼ 0:8216 from expression
(3) is same as calculated results by Kergomard and Garcia [6] and Norris and Sheng [7]. A
comparison of formulas (4) and (5) in Ref. [4], deduced from Refs. [2,3], with Eq. (3) in the present
paper leads to the same value for small diameters, but Eq. (3) gives a larger value for large
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ab/ap

 /
a

b
δ

Fig. 6. Acoustic length correction of closed cylindrical side-branched tube: �, BEM; —, Eq. (3).
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diameters. To verify the calculated results using the BEM, we recalculate the transmission loss of
the side-branched resonator with db=dp ¼ 1:0 using the FEM in Sysnoise software package to
determine the acoustic length correction, and a very closed value is obtained with the relative error
less than 0.5%.
Finally, the corrected one-dimensional approach is used to predict the transmission loss and

resonance frequency of a pipe-mounted concentric Helmholtz resonator ( lv ¼ 24:420 cm; dv ¼

15:319 cm; lc ¼ 8:50 cm; dc ¼ 4:044 cm; dp ¼ 4:859 cm) as shown in Fig. 7. The neck length is
modified by adding a length correction factor for each end, thereby replacing lc by l0c ¼

lc þ dv þ dp; dv and dp being the added lengths corresponding to the neck and cavity volume as
well as neck and main pipe interfaces, respectively. The acoustic length corrections are determined
from expression (21) of Ref. [8] for the neck and cavity volume connection and expression (3) of
the present paper for the neck and main pipe connection. The transmission loss results from the
corrected one-dimensional approach and BEM are depicted in Fig. 8. For comparison purposes,
Fig. 8 also includes the experimental results. It is observed that the transmission loss predictions
from the corrected one-dimensional approach agree very well with the BEM predictions and
experimental results. The one-dimensional approach without end corrections predicts the
resonance frequency 96.7Hz, while the corrected one-dimensional approach, BEM and
experiment provide very close resonance frequency values 87.8, 88.0 and 88.5Hz, respectively.
The difference in transmission loss and resonance frequency between the calculated and
experimental results is currently being assessed in relation to neglected viscous effects in the
computational approach, and minor geometrical imperfections in the experimental set-up (for
example, the slight deviation of the junction of neck and main pipe from the ideal connection
interface). Using the experimental value of the resonance frequency, the total length correction
dv þ dp=1.752 cm is obtained, while the BEM and corrected 1-D analytical approach yield the
total length correction dv þ dp =1.875 and 1.919 cm, respectively.
dp

dc l c

dv

l v

Fig. 7. Pipe-mounted concentric Helmholtz resonator.
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Fig. 8. Transmission loss of pipe-mounted concentric Helmholtz resonator: ..... , corrected 1-D approach; —, BEM; �,
experiment.
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To conclude, the present study (1) provides a simple expression for the acoustic length
correction of closed cylindrical side-branched tube mounted perpendicular to a cylindrical main
pipe; (2) examines the effects of the Helmholtz number and finite length on the acoustic length
correction of side-branched tube; (3) compares the 3-D boundary element predictions and the
corrected 1-D analytical solutions to assess the accuracy and applicability of the latter; and (4)
illustrates the importance of acoustic length correction for an accurate prediction of resonance
frequency of the pipe-mounted resonator.
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